
On Lipschitz Analysis and Lipschitz Synthesis for the Phase

Retrieval Problem

Radu Balana, Dongmian Zoub,∗

aDepartment of Mathematics, Center for Scientific Computation and Mathematical Modeling, University
of Maryland, College Park, MD 20742, USA

bDepartment of Mathematics, University of Maryland, College Park, MD 20742, USA

Abstract

We prove two results with regard to reconstruction from magnitudes of frame coefficients (the
so called “phase retrieval problem”). First we show that phase retrievable nonlinear maps
are bi-Lipschitz with respect to appropriate metrics on the quotient space. Specifically,
if nonlinear analysis maps α, β : Ĥ → Rm are injective, with α(x) = (| 〈x, fk〉 |)mk=1 and
β(x) = (| 〈x, fk〉 |2)mk=1, where {f1, . . . , fm} is a frame for a Hilbert space H and Ĥ =
H/T 1, then α is bi-Lipschitz with respect to the class of “natural metrics” Dp(x, y) =
minϕ ‖x− eiϕy‖p, whereas β is bi-Lipschitz with respect to the class of matrix-norm induced
metrics dp(x, y) = ‖xx∗ − yy∗‖p. Second we prove that reconstruction can be performed
using Lipschitz continuous maps. That is, there exist left inverse maps (synthesis maps)
ω, ψ : Rm → Ĥ of α and β respectively, that are Lipschitz continuous with respect to
appropriate metrics. Additionally, we obtain the Lipschitz constants of ω and ψ in terms
of the lower Lipschitz constants of α and β, respectively. Surprisingly, the increase in both
Lipschitz constants is a relatively small factor, independent of the space dimension or the
frame redundancy.
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1. Introduction

Let H be an n-dimensional real or complex Hilbert space. On H we consider the equiv-
alence relation ∼ defined by

x ∼ y iff there is a scalar a of magnitude one, |a| = 1, for which y = ax .

Let Ĥ = H/ ∼ denote the collection of the equivalence classes. We use x̂ to denote the
equivalence class of x in Ĥ. When there is no ambiguity, we also use x in place of x̂ for
simplicity.
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Assume that F = {f1, f2, . . . , fm} is a frame (that is, a spanning set) for H. Let α and
β denote the nonlinear maps

α : Ĥ → Rm , α(x) = (| 〈x, fk〉 |)1≤k≤m , (1)

and
β : Ĥ → Rm , β(x) =

(
| 〈x, fk〉 |2

)
1≤k≤m . (2)

The phase retrieval problem, or the phaseless reconstruction problem, refers to analyzing
when α (or equivalently, β) is an injective map, and in this case to finding “good” left
inverses.

The frame F is said to be phase retrievable if the nonlinear map α (or β) is injective. In
this paper we assume α and β are injective maps (hence F is phase retrievable). The problem
is to analyze the stability properties of phaseless reconstruction. We explore this problem
by studying Lipschitz properties of these nonlinear maps. A continuous map f : (X, dX)→
(Y, dY ), defined between metric spaces X and Y with distances dX and dY respectively, is
Lipschitz continuous with Lipschitz constant Lip(f) if

Lip(f) := sup
x1,x2∈X

dY (f(x1), f(x2))

dX(x1, x2)
<∞ .

Further, the map f is called bi-Lipschitz with lower Lipschitz constant a and upper Lipschitz
constant b if for every x1, x2 ∈ X,

a dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ b dX(x1, x2) .

Obviously the smallest upper Lipschitz constant is b = Lip(f). If f is bi-Lipschitz then f is
injective.

The space Ĥ admits two classes of inequivalent distances. We introduce and study them
in detail in section 2. In particular, consider the following two distances:

D2(x, y) = min
ϕ

∥∥x− eiϕy∥∥
2

=

√
‖x‖2 + ‖y‖2 − 2| 〈x, y〉 | ,

and

d1(x, y) = ‖xx∗ − yy∗‖1 =

√
(‖x‖2 + ‖y‖2)2 − 4| 〈x, y〉 |2 .

When the frame is phase retrievable the nonlinear maps α : (Ĥ,D2) → (Rm, ‖·‖2) and

β : (Ĥ, d1) → (Rm, ‖·‖2) are shown to be bi-Lipschitz. This statement was previously
known for the map β in the real and complex case (see [2, 3, 6]), and for the map α in the
real case only (see [13, 6, 8]). In this paper we prove this statement for α in the complex
case.

In general, noisy measurements are not in the image of the analysis map α(Ĥ) or β(Ĥ). In
this paper we prove that the unique left inverses of α and β can be extended from α(Ĥ) and
β(Ĥ), respectively, to the entire space Rm while the extended maps remain to be Lipschitz
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continuous. Specifically, there exist two Lipschitz continuous maps ω : (Rm, ‖·‖2)→ (Ĥ,D2)

and ψ : (Rm, ‖·‖2)→ (Ĥ, d1) so that ω(α(x)) = x and ψ(β(x)) = x for every x ∈ H.
Consider one of the maps α and β, say α (a similar discussion works for β). Assume an

additive noise model y = α(x) + ν, where ν ∈ Rm is the noise. For a signal x0 ∈ Ĥ, and
noise ν1 ∈ Rm, let y1 = α(x0) + ν1 ∈ Rm be the measurement vector, and let x1 = ω(y1) be
the reconstructed signal. We have

d1(x0, x1) = d1 (ω(α(x0)), ω(y1)) ≤ Lip(ω) · ‖α(x0)− y1‖ = Lip(ω) · ‖ν1‖ .

Figure 1 is an illustration of this model. In fact, we have stability in a stronger sense. If we
have two noisy measurements y1 = α(x0) + ν1 and y2 = α(x0) + ν2 of the signal x0, then

d1(x1, x2) = d1 (ω(y1), ω(y2)) ≤ Lip(ω) · ‖y1 − y2‖ = Lip(ω) · ‖ν1 − ν2‖ .

Figure 1: Illustration of the noisy measurement model

Denote by aα and aβ the lower Lipschitz constants of α and β respectively. In this
paper we prove also that the upper Lipschitz constants of these maps obey Lip(ω) ≤ 8.25

aα

and Lip(ψ) ≤ 8.25
aβ

. Surprisingly, this shows the Lipschitz constant of these left inverses are

just a small factor larger than the minimal Lipschitz constants. Furthermore this factor is
independent of dimension n or number of frame vectors m.

The organization of this paper is as follows. Section 2 introduces notations and presents
the results for bi-Lipschitz properties. Section 3 presents the results for the extension of the
left inverse. Section 4 contains the proof of these results.

2. Bi-Lipschitz Properties for the Analysis Map

2.1. Notations

To study the bi-Lipschitz properties, we need to choose an appropriate distance on Ĥ.
We consider two classes of metrics (distances), respectively:
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1. the class of natural metrics. For every 1 ≤ p ≤ ∞ and x, y ∈ H, we define

Dp(x̂, ŷ) = min
|a|=1
‖x− ay‖p .

When no subscript is used, ‖·‖ denotes the Euclidean norm, ‖·‖ = ‖·‖2.

2. the class of matrix norm induced metrics. For every 1 ≤ p ≤ ∞ and x, y ∈ H, we define

dp(x̂, ŷ) = ‖xx∗ − yy∗‖p =

{
(
∑n

k=1(σk)
p)

1/p
for 1 ≤ p <∞

max1≤k≤n σk for p =∞ , (3)

where (σk)1≤k≤n are the singular values of the operator xx∗ − yy∗, which is of rank at
most 2. Here x∗ denotes the adjoint of x (see [3] for a detailed discussion), which is the
transpose conjugate of x if H = Rn or Cn.

Our choice in (3) corresponds to the class of Schatten norms. In particular, d∞ corre-
sponds to the operator norm ‖·‖op in Sym(H) = {T : H → H , T = T ∗}; d2 corresponds to
the Frobenius norm ‖·‖Fr in Sym(H); d1 corresponds to the nuclear norm ‖·‖∗ in Sym(H).
Specifically, we have

d∞(x, y) = ‖xx∗ − yy∗‖op , d2(x, y) = ‖xx∗ − yy∗‖Fr ,

d1(x, y) = ‖xx∗ − yy∗‖∗ .

Note that the Frobenius norm ‖T‖Fr =
√

trace(TT ∗) induces the Euclidean distance on
Sym(H). As a consequence of Lemma 3.8 in [3], we have:

d∞(x, y) =
1

2
| ‖x‖2 − ‖y‖2 |+ 1

2

√
(‖x‖2 + ‖y‖2)2 − 4| 〈x, y〉 |2 ,

d2(x, y) =

√
‖x‖4 + ‖y‖4 − 2| 〈x, y〉 |2 ,

d1(x, y) =

√
(‖x‖2 + ‖y‖2)2 − 4| 〈x, y〉 |2 .

To study the above distances it is important to study eigenvalues of symmetric matrices.
Let Sp,q(H) denote the set of symmetric operators that have at most p strictly positive
eigenvalues and q strictly negative eigenvalues. In particular, S1,0(H) is the set of non-
negative symmetric operators of rank at most one:

S1,0(H) = {xx∗, x ∈ H } . (4)

If H = Rn or Cn, then Sym(H) is the set of n-dimensional Hermitian matrices. For a matrix
X ∈ Sym(Rn) or Sym(Cn), we use λ1(X), λ2(X), · · · , λn(X) to denote its eigenvalues. These
eigenvalues are real numbers and we arrange them to satisfy λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

To analyze the bi-Lipschitz properties, we define the following three types of Lipschitz
bounds for α. Note that the Lipschitz constants are square-roots of those bounds.
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(i) The global lower and upper Lipschitz bounds, respectively:

A0 = inf
x,y∈Ĥ

‖α(x)− α(y)‖2
2

D2(x, y)2
,

B0 = sup
x,y∈Ĥ

‖α(x)− α(y)‖2
2

D2(x, y)2
;

(ii) The type I local lower and upper Lipschitz bounds at z ∈ Ĥ, respectively:

A(z) = lim
r→0

inf
x,y∈Ĥ

D2(x,z)<r
D2(y,z)<r

‖α(x)− α(y)‖2
2

D2(x, y)2
,

B(z) = sup
r→0

inf
x,y∈Ĥ

D2(x,z)<r
D2(y,z)<r

‖α(x)− α(y)‖2
2

D2(x, y)2
;

(iii) The type II local lower and upper Lipschitz bounds at z ∈ Ĥ, respectively:

Ã(z) = lim
r→0

inf
x∈Ĥ

D2(x,z)<r

‖α(x)− α(z)‖2
2

D2(x, z)2
,

B̃(z) = sup
r→0

inf
x∈Ĥ

D2(x,z)<r

‖α(x)− α(z)‖2
2

D2(x, y)2
.

Similarly, we define the three types of Lipschitz constants for β.

(i) The global lower and upper Lipschitz bounds, respectively:

a0 = inf
x,y∈Ĥ

‖β(x)− β(y)‖2
2

d1(x, y)2
,

b0 = sup
x,y∈Ĥ

‖β(x)− β(y)‖2
2

d1(x, y)2
;

(ii) The type I local lower and upper Lipschitz bounds at z ∈ Ĥ, respectively:

a(z) = lim
r→0

inf
x,y∈Ĥ

d1(x,z)<r
d1(y,z)<r

‖β(x)− β(y)‖2
2

d1(x, y)2
,

b(z) = lim
r→0

sup
x,y∈Ĥ

d1(x,z)<r
d1(y,z)<r

‖β(x)− β(y)‖2
2

d1(x, y)2
;
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(iii) The type II local lower and upper Lipschitz bounds at z ∈ Ĥ, respectively:

ã(z) = lim
r→0

inf
x∈Ĥ

d1(x,z)<r

‖β(x)− β(z)‖2
2

d1(x, z)2
,

b̃(z) = lim
r→0

sup
x∈Ĥ

d1(x,z)<r

‖β(x)− β(z)‖2
2

d1(x, z)2
.

Due to homogeneity we have A0 = A(0), B0 = B(0), a0 = a(0), b0 = b(0). Also, for
z 6= 0, we have A(z) = A(z/ ‖z‖), B(z) = B(z/ ‖z‖), a(z) = a(z/ ‖z‖), b(z) = b(z/ ‖z‖).

We analyze the bi-Lipschitz properties of α and β by studying these constants.

2.2. Bi-Lipschitz Properties for α

The real case H = Rn is studied in [6]. We summarize the results as a theorem.
Recall that F = {f1, · · · , fm} is a frame in H if there exist positive constants A and B

for which

A ‖x‖2 ≤
m∑
k=1

|〈x, fk〉|2 ≤ B ‖x‖2 . (5)

We say A (resp., B) is the optimal lower (resp., upper) frame bound if A (resp., B) is the
largest (resp., smallest) positive number for which the inequality (5) is satisfied.

For any index set I ⊂ {1, 2, · · · ,m}, let F [I] = {fk, k ∈ I} denote the frame subset
indexed by I. Also, let σ2

1[I] and σ2
n[I] denote the upper and lower frame bound of set F [I],

respectively. It is straightforward to see that they respectively correspond to the largest and
smallest eigenvalues of

∑
k∈I fkf

∗
k , that is,

σ2
1[I] = λmax

(∑
k∈I

fkf
∗
k

)
and σ2

n[I] = λmin

(∑
k∈I

fkf
∗
k

)
.

Theorem 2.1 ([6]). Let F ⊂ Rn be a phase retrievable frame for Rn. Let A and B denote
its optimal lower and upper frame bound, respectively. Then

(i) For every 0 6= x ∈ Rn, A(x) = σ2
n(supp(α(x)) where supp(α(x)) = {k, 〈x, fk〉 6= 0};

(ii) For every x ∈ Rn, Ã = A;

(iii) A0 = A(0) = minI⊂{1,2,··· ,m}(σ
2
n[I] + σ2

n[Ic]);

(iv) For every x ∈ Rn, B(x) = B̃(x) = B;

(v) B0 = B(0) = B̃(0) = B.

Now we consider the complex case H = Cn. We analyze the complex case by doing a
realification first. Consider the R-linear map j : Cn → R2n defined by

j(z) =

[
real(z)
imag(z)

]
.
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This realification is studied in detail in [3]. We call j(z) the realification of z. For simplicity,
in this paper we will denote ξ = j(x), η = j(y), ζ = j(z), ϕ = j(f), δ = j(d), respectively.

For a frame set F = {f1, f2, · · · , fm}, define the symmetric operator

Φk = ϕkϕ
T
k + Jϕkϕ

T
k J

T , k = 1, 2, · · · ,m.

where

J =

[
0 −I
I 0

]
(6)

is a matrix in R2n×2n.
Also, define S : R2n → Sym(R2n) by

S(ξ) =

{
0 , if ξ = 0∑

k:Φkξ 6=0
1

〈Φkξ,ξ〉
Φkξξ

TΦk , if ξ 6= 0
.

We have the following result (proved in Section 4):

Theorem 2.2. Let F ⊂ Cn be a phase retrievable frame for Cn. Let A and B denote its
optimal lower and upper frame bound, respectively. For any z ∈ Cn, let ζ = j(z) be its
realification. Then

(i) For every 0 6= z ∈ Cn, A(z) = λ2n−1(S(ζ)) ;

(ii) A0 = A(0) > 0 ;

(iii) For every z ∈ Cn, Ã(z) = λ2n−1

(
S(ζ) +

∑
k:〈z,fk〉=0 Φk

)
;

(iv) Ã(0) = A ;

(v) For every z ∈ Cn, B(z) = B̃(z) = λ1

(
S(ζ) +

∑
k:〈z,fk〉=0 Φk

)
;

(vi) B0 = B(0) = B̃(0) = B .

2.3. Bi-Lipschitz Properties for β

The nonlinear map β naturally induces a linear map between the space Sym(H) of
symmetric operators on H and Rm:

A : Sym(H)→ Rm , A(T ) = (〈Tfk, fk〉)1≤k≤m .

This linear map has first been observed in [5] and it has been exploited successfully in various
papers e.g. [1, 11, 2]. Note that the map β is injective if and only if A restricted to S1,0(H)
is injective.

In previous papers [3, 6], the authors establish global bi-Lipschitz results for phase-
retrievable frames. We summarize them as follows:

Theorem 2.3 ([3], [6]). Let F be a phase retrievable frame for H = Cn. Then

(i) the global lower Lipschitz bound a0 > 0;
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(ii) the global upper Lipschitz bound b0 <∞, and

b0 = max
‖x‖=‖y‖=1

m∑
k=1

(real (〈x, fk〉 〈fk, y〉))2

= max
‖x‖=1

m∑
k=1

|〈x, fk〉|4

= ‖T‖4
B(H,l4m) ,

where T : H → Cm is the analysis operator defined by x 7→ (〈x, fk〉)mk=1, and l4m :=
(Cm, ‖·‖4).

Remark 2.4. An upper bound of b0 is given by

b0 ≤ B

(
max

1≤k≤m
‖fk‖

)2

≤ B2 ,

where B is the upper frame bound of F .

We give an expression of the local Lipschitz bounds as well. Define R : R2n → Sym(R2n)
by

R(ξ) =
m∑
k=1

Φkξξ
TΦk .

Theorem 2.5. Let F be a phase retrievable frame for H = Cn. For every 0 6= z ∈ H, let
ζ = j(z) denote the realification of z. Then

(i) a(z) = ã(z) = λ2n−1(R(ζ))/ ‖ζ‖2;

(ii) b(z) = b̃(z) = λ1(R(ζ))/ ‖ζ‖2;

(iii) (see [3]) a(0) = a0 = min‖ζ‖=1 λ2n−1 (R(ζ));

(iv) ã(0) = min‖x‖=1

∑m
k=1 |〈x, fk〉|

4;

(v) b(0) = b̃(0) = b0.

3. Extension of the Inverse Map

The results in this section work for both H = Rn and Cn. First we show that all metrics
Dp and dp defined in Section 2 induce the same topology in the following result.

Proposition 3.1. We have the following statements regarding Dp and dp:

(i) For each 1 ≤ p ≤ ∞, Dp and dp are metrics (distances) on Ĥ.

(ii) (Dp)1≤p≤∞ are equivalent metrics, that is each Dp induces the same topology on Ĥ

as D1. Additionally, for every 1 ≤ p, q ≤ ∞ the embedding i : (Ĥ,Dp) → (Ĥ,Dq),
i(x) = x, is Lipschitz with Lipschitz constant

LDp,q,n = max(1, n
1
q
− 1
p ). (7)
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(iii) For 1 ≤ p, q ≤ ∞, (dp)1≤p≤∞ are equivalent metrics, that is each dp induces the

same topology on Ĥ as d1. Additionally, for every 1 ≤ p, q ≤ ∞ the embedding
i : (Ĥ, dp)→ (Ĥ, dq), i(x) = x, is Lipschitz with Lipschitz constant

Ldp,q,n = max(1, 2
1
q
− 1
p ). (8)

(iv) The identity map i : (Ĥ,Dp) → (Ĥ, dp), i(x) = x, is continuous with continuous
inverse. However it is not Lipschitz, nor is its inverse.

(v) The metric space (Ĥ,Dp) is Lipschitz isomorphic to S1,0(H) endowed with Schatten
norm ‖·‖p. The isomorphism is given by the map

κα : Ĥ → S1,0(H) , κα(x) =

{ 1
‖x‖xx

∗ if x 6= 0

0 if x = 0
. (9)

The embedding κα is bi-Lipschitz with the lower Lipschitz constant

min(2
1
2
− 1
p , n

1
p
− 1

2 )

and the upper Lipschitz constant

√
2 max(n

1
2
− 1
p , 2

1
p
− 1

2 ) .

In particular, for p = 2, the lower Lipschitz constant is 1 and the upper Lipschitz
constant is

√
2.

(vi) The metric space (Ĥ, dp) is isometrically isomorphic to S1,0(H) endowed with Schatten
norm ‖·‖p. The isomorphism is given by the map

κβ : Ĥ → S1,0(H) , κβ(x) = xx∗. (10)

In particular the metric space (Ĥ, d1) is isometrically isomorphic to S1,0(H) endowed
with the nuclear norm ‖·‖1.

(vii) The nonlinear map ι : (Ĥ,Dp)→ (Ĥ, dp) defined by

ι(x) =

{
x√
‖x‖

if x 6= 0

0 if x = 0

is bi-Lipschitz with the lower Lipschitz constant min(2
1
2
− 1
p , n

1
p
− 1

2 ) and the upper Lips-

chitz constant
√

2 max(n
1
2
− 1
p , 2

1
p
− 1

2 ).

Remark 3.2. (i) Note that the Lipschitz bound LDp,q,n is equal to the operator norm of
the identity between (Cn, ‖·‖p) and (Cn, ‖·‖q): LDp,q,n = ‖I‖lpn→lqn .

(ii) Note the equality Ldp,q,n = LDp,q,2.
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The results in Section 2, together with the previous proposition, show that if the frame F
is phase retrievable, then the nonlinear map α (resp., β) is bi-Lipschitz between the metric
spaces (Ĥ,Dp) (resp., (Ĥ, dp)) and (Rm, ‖·‖q). Recall that the Lipschitz constants between

(Ĥ,D2) (resp., (Ĥ, d1)) and (Rm, ‖·‖ = ‖·‖2) are given by
√
A0 (resp.,

√
a0) and

√
B0 (resp.,√

b0): √
A0D2(x, y) ≤ ‖α(x)− α(y)‖ ≤

√
B0D2(x, y) , (11)

√
a0d1(x, y) ≤ ‖β(x)− β(y)‖ ≤

√
b0d1(x, y) . (12)

Clearly the inverse map defined on the range of α (resp., β) from metric space (α(Ĥ), ‖·‖)
(resp., (β(Ĥ), ‖·‖)) to (Ĥ,D2) (resp., (Ĥ, d1)):

ω̃ : α(Ĥ) ⊂ Rm → Ĥ , ω̃(c) = x if α(x) = c ; (13)

ψ̃ : β(Ĥ) ⊂ Rm → Ĥ , ψ̃(c) = x if β(x) = c . (14)

is Lipschitz with Lipschitz constant 1/
√
A0 (resp., 1/

√
a0). We prove that both ω̃ and ψ̃ can

be extended to the entire Rm as a Lipschitz map, and its Lipschitz constant is increased by
a small factor.

The precise statement is given in the following Theorem, which is the main result of this
paper.

Theorem 3.3. Let F = {f1, . . . , fm} be a phase retrievable frame for the n dimensional
Hilbert space H, and let α, β : Ĥ → Rm denote the injective nonlinear analysis maps as
defined in (1) and (2). Let A0 and a0 denote the positive constants as in (11) and (12).
Then

(i) there exists a Lipschitz continuous function ω : Rm → Ĥ so that ω(α(x)) = x for all
x ∈ Ĥ. For any 1 ≤ p, q ≤ ∞, ω has an upper Lipschitz constant Lip(ω)p,q between

(Rm, ‖·‖p) and (Ĥ,Dq) bounded by:

Lip(ω)p,q ≤


3
√

2+4√
A0
· 2

1
q
− 1

2 ·max(1,m
1
2
− 1
p ) for q ≤ 2;

3
√

2+2
3
2+1

q√
A0

· n
1
2
− 1
q ·max(1,m

1
2
− 1
p ) for q > 2.

(15)

Explicitly this means: for q ≤ 2 and for all c, d ∈ Rm:

Dq(ω(c), ω(d)) ≤ 3
√

2 + 4√
A0

· 2
1
q
− 1

2 ·max(1,m
1
2
− 1
p ) ‖c− d‖p , (16)

whereas for q > 2 and for all c, d ∈ Rm:

Dq(ω(c), ω(d)) ≤ 3
√

2 + 2
3
2

+ 1
q

√
A0

· n
1
2
− 1
q ·max(1,m

1
2
− 1
p ) ‖c− d‖p . (17)

In particular, for p = 2 and q = 2 its Lipschitz constant Lip(ω)2,2 is bounded by 4+3
√

2√
a0

:

D2(ω(c), ω(d)) ≤ 4 + 3
√

2
√
a0

‖c− d‖ . (18)
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(ii) there exists a Lipschitz continuous function ψ : Rm → Ĥ so that ψ(β(x)) = x for all
x ∈ Ĥ. For any 1 ≤ p, q ≤ ∞, ψ has an upper Lipschitz constant Lip(ψ)p,q between

(Rm, ‖·‖p) and (Ĥ, dq) bounded by:

Lip(ψ)p,q ≤


3+2
√

2√
a0
· 2

1
q
− 1

2 ·max(1,m
1
2
− 1
p ) for q ≤ 2;

3+2
1+1

q
√
a0

max(1,m
1
2
− 1
p ) for q > 2.

(19)

Explicitly this means: for q ≤ 2 and for all c, d ∈ Rm:

dq(ψ(c), ψ(d)) ≤ 3 + 2
√

2
√
a0

· 2
1
q
− 1

2 ·max(1,m
1
2
− 1
p ) ‖c− d‖p , (20)

whereas for q > 2 and for all c, d ∈ Rm:

dq(ψ(c), ψ(d)) ≤ 3 + 21+ 1
q

√
a0

max(1,m
1
2
− 1
p ) ‖c− d‖p . (21)

In particular, for p = 2 and q = 1 its Lipschitz constant Lip(ψ)2,1 bounded by 4+3
√

2√
a0

:

d1(ψ(c), ψ(d)) ≤ 4 + 3
√

2
√
a0

‖c− d‖ . (22)

The proof of Theorem 3.3, presented in Section 4, requires the construction of a special
Lipschitz map. We believe this particular result is interesting in itself and may be used in
other constructions. This construction is given in [7] for the case p = 2. Here we consider a
general p and give a better bound for the Lipschitz constant. We state it as a lemma.

Lemma 3.4. Consider the spectral decomposition of any self-adjoint operator A in Sym(H),
say A =

∑d
k=1 λm(k)Pk, where λ1 ≥ λ2 ≥ · · · ≥ λn are the n eigenvalues including multiplic-

ities, and P1,...,Pd are the orthogonal projections associated to the d distinct eigenvalues.
Additionally, m(1) = 1 and m(k + 1) = m(k) + r(k), where r(k) = rank(Pk) is the multi-
plicity of eigenvalue λm(k). Then the map

π : Sym(H)→ S1,0(H) , π(A) = (λ1 − λ2)P1 (23)

satisfies the following two properties:

(i) for 1 ≤ p ≤ ∞, π is Lipschitz continuous from (Sym(H), ‖·‖p) to (S1,0(H), ‖·‖p) with

Lipschitz constant Lip(π) ≤ 3 + 21+ 1
p ;

(ii) π(A) = A for all A ∈ S1,0(H).

Remark 3.5. Numerical experiments suggest that the Lipschitz constant of π is smaller
than 5 for p =∞. On the other hand it cannot be smaller than 2 as the following example
shows.
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Example 3.6. If A =

(
1 0
0 1

)
, B =

(
2 0
0 0

)
, then π(A) =

(
0 0
0 0

)
and π(B) =

(
2 0
0 0

)
.

Here we have ‖π(A)− π(B)‖∞ = 2 and ‖A−B‖∞ = 1. Thus for this example we have

‖π(A)− π(B)‖∞ = 2 ‖A−B‖∞ .

It is unlikely to obtain an isometric extension in Theorem 3.3. Kirszbraun theorem [14]
gives a sufficient condition for isometric extensions of Lipschitz maps. The theorem states
that isometric extensions are possible when the pair of metric spaces satisfy the Kirszbraun
property, or the K property:

Definition 3.7 (The Kirszbraun Property (K)). Let X and Y be two metric spaces
with metric dx and dy respectively. (X, Y ) is said to have Property (K) if for any pair of
families of closed balls {B(xi, ri) : i ∈ I}, {B(yi, ri) : i ∈ I}, such that dy(yi, yj) ≤ dx(xi, xj)
for each i, j ∈ I, it holds that

⋂
B(xi, ri) 6= ∅ ⇒

⋂
B(yi, ri) 6= ∅.

If (X, Y ) has Property (K), then by Kirszbraun’s Theorem we can extend a Lipschitz
mapping defined on a subspace of X to a Lipschitz mapping defined on X while maintaining
the Lipschitz constant. Unfortunately, if we consider (X, dX) = (Rm, ‖·‖) and Y = Ĥ,
Property (K) does not hold for either Dp or dp.

Example 3.8. Property (K) does not hold for Ĥ with norm Dp. Specifically, (Rm,Rn/ ∼)
does not have Property K. We give a counterexample for m = n = 2, p = 2: Let ỹ1 = (3, 1),
ỹ2 = (−1, 1), ỹ3 = (0, 1) be the representatives of three points y1, y2, y3 in R2/ ∼. Then
D2(y1, y2) = 2

√
2, D2(y2, y3) = 1 and D2(y1, y3) = 3. Consider x1 = (0, 0), x2 = (0,−2

√
2),

x3 = (−1,−2
√

2) in R2 with the Euclidean distance, then we have ‖x1 − x2‖ = 2
√

2,
‖x2 − x3‖ = 1 and ‖x1 − x3‖ = 3. For r1 =

√
6, r2 = 2 −

√
2, r3 =

√
6 −
√

3, we see
that (1 −

√
2, 1 +

√
2) ∈

⋂3
i=1B(xi, ri) but

⋂3
i=1 B(yi, ri) = ∅. To see

⋂3
i=1B(yi, ri) = ∅,

it suffices to look at the upper half plane in R2. If we look at the upper half plane H,
then B(y1, r1) becomes the union of two parts, namely B(ỹ1, r1) ∪ H and B(−ỹ1, r1) ∪ H,
and B(yi, ri) becomes B(ỹi, ri) for i = 2, 3. But (B(ỹ1, r1) ∪ H) ∩ B(ỹ2, r2) = ∅ and
(B(−ỹ1, r1) ∪H) ∩B(ỹ3, r3) = ∅. So we obtain that

⋂3
i=1B(yi, ri) = ∅.

The following example is given in [7].

Example 3.9. Property (K) does not hold for Ĥ with norm dp. Specifically, (Rm,Cn/ ∼)
does not have Property K. Let m be any positive integer and n = 2, p = 2. We want to show
that (X, Y ) = (Rm,Cn/ ∼) does not have Property (K). Let ỹ1 = (1, 0) and ỹ2 = (0,

√
3)

be representitives of y1, y2 ∈ Y , respectively. Then d1(y1, y2) = 4. Pick any two points x1,
x2 in X with ‖x1 − x2‖ = 4. Then B(x1, 2) and B(x2, 2) intersect at x3 = (x1 + x2)/2 ∈ X.
It suffices to show that the closed balls B(y1, 2) and B(y2, 2) have no intersection in H.
Assume on the contrary that the two balls intersect at y3, then pick a representive of y3, say
ỹ3 = (a, b) where a, b ∈ C. It can be computed that

d1(y1, y3) = |a|4 + |b|4 − 2 |a|2 + 2 |b|2 + 2 |a|2 |b|2 + 1 , (24)
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and
d1(y2, y3) = |a|4 + |b|4 + 6 |a|2 − 6 |b|2 + 2 |a|2 |b|2 + 9 . (25)

Set d1(y1, y3) = d1(y2, y3) = 2. Take the difference of the right hand side of (24) and (25),
we have |b|2 − |a|2 = 1 and thus |b|2 ≥ 1. However, the right hand side of (24) can be
rewritten as (|a|2 + |b|2 − 1)2 + 4 |b|2, so d1(y1, y3) = 2 would imply that |b|2 ≤ 1/2. This is
a contradiction.

Remark 3.10. Using nonlinear functional analysis language ([9]), Lemma 3.4 can be re-
stated by saying that S1,0(H) is a 5-Lipschitz retract in Sym(H).

Remark 3.11. The Lipschitz inversion results of Theorem 3.3 can be easily extended to
systems of quadratic equations, not necessarily of rank-1 matrices from the phase retrieval
model considered in this paper.

4. Proof of the Results

4.1. Proof of Theorem 2.2

(i) First we prove the following lemma.

Lemma 4.1. Fix x ∈ Cn and z ∈ Cn. Let ξ = j(x) and ζ = j(z) be their realifications,
respectively. Let ξ0 ∈ ξ̂ := {j(x̃) ∈ R2n : x̃ ∈ x̂} be a point in the equivalency class that
satisfies D2(x, z) = ‖ξ0 − ζ‖. Then it is necessary that

〈ξ0, Jζ〉 = 0 (26)

and
〈ξ0, ζ〉 ≥ 0 , (27)

where J is defined as in (6).

Proof. For θ ∈ [0, 2π) define

U(θ) := cos(θ)I + sin(θ)J .

Then it is easy to compute that

j(eiθx) = U(θ)ξ .

Therefore,

D2(x, z) = min
θ∈[0,2π)

‖U(θ)ξ − ζ‖2 = ‖ξ‖2 + ‖ζ‖2 − 2 max
θ∈[0,2π)

〈U(θ)ξ, ζ〉 .

If 〈U(θ)ξ, ζ〉 is constantly zero, then we are done. Otherwise, note that

max
θ∈[0,2π)

〈U(θ)ξ, ζ〉 =
(
〈ξ, ζ〉2 + 〈Jξ, ζ〉2

) 1
2

13



and the maximum is achieved at θ = θ0 if and only if

cos(θ0) =
〈ξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

and

sin(θ0) =
〈Jξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

.

Now we can compute

〈ξ0, Jζ〉 = 〈U(θ0)ξ, Jζ〉
= cos(θ0) 〈ξ, Jζ〉+ sin(θ0) 〈Jξ, Jζ〉

=
〈ξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

〈ξ, Jζ〉+
〈Jξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

〈Jξ, Jζ〉

=
〈ξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

〈−Jξ, ζ〉+
〈Jξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

〈ξ, ζ〉

= 0 .

So we get (26). (27) is obvious.

Now we come back to the proof of the theorem. Denote

p(x, y) :=
‖α(x)− α(y)‖2

D2(x, y)2
, x, y ∈ Cn, x̂ 6= ŷ. (28)

We can represent this quotient in terms of ξ and η. It is easy to compute that

p(x, y) = P (ξ, η) :=

∑m
k=1 〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2

√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

. (29)

Fix r > 0. Take ξ, η ∈ R2n that satisfy D2(x, z) = ‖ξ − ζ‖ < r and D2(y, z) =
‖η − ζ‖ < r. Let µ = (ξ + η)/2 and ν = (ξ − η)/2. Then ‖ν‖ < r. Note that for r
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small enough we have that ‖µ‖ > ‖ν‖ and that Φkζ 6= 0⇒ Φkµ 6= 0. Thus

P (ξ, η) =

( m∑
k=1

〈Φk(µ+ ν), µ+ ν〉+ 〈Φk(µ− ν), µ− ν〉−

2
√
〈Φk(µ+ ν), µ+ ν〉 〈Φk(µ− ν), µ− ν〉

)
·(

‖µ+ ν‖2 + ‖µ− ν‖2 − 2

√
〈µ+ ν, µ− ν〉2 + 〈µ+ ν, J(µ− ν)〉2

)−1

=

( m∑
k=1

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2
)
·(

‖µ‖2 + ‖ν‖2 −
√
‖µ‖4 + ‖ν‖4 − 2 ‖µ‖2 ‖ν‖2 + 4 〈µ, Jν〉2

)−1

≥
( ∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2
)
·

(
‖µ‖2 + ‖ν‖2 −

√
‖µ‖4 + ‖ν‖4 − 2 ‖µ‖2 ‖ν‖2

)−1

=
1

2 ‖ν‖2

∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2

=
1

2 ‖ν‖2

∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉−

〈Φkµ, µ〉

√(
1 +
〈Φkν, ν〉
〈Φkµ, µ〉

)2

− 4
〈Φkµ, ν〉2

〈Φkµ, µ〉2

=
1

2 ‖ν‖2

∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉−

〈Φkµ, µ〉

√
1 + 2

〈Φkν, ν〉
〈Φkµ, µ〉

+
〈Φkν, ν〉2

〈Φkµ, µ〉2
− 4
〈Φkµ, ν〉2

〈Φkµ, µ〉2

=
1

2 ‖ν‖2

∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉−

〈Φkµ, µ〉

(
1 +
〈Φkν, ν〉
〈Φkµ, µ〉

− 2
〈Φkµ, ν〉2

〈Φkµ, µ〉2

)
+O(‖ν‖4)

=
∑

k:Φkζ 6=0

〈Φkµ, ν〉2

〈Φkµ, µ〉 ‖ν‖2 +O(‖ν‖2)

=
1

‖ν‖2 〈S(µ)ν, ν〉+O(‖ν‖2) .
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Note that

|〈Jµ, ν〉| = |〈Jµ, ν〉 − 〈Jζ, ν〉| ≤ ‖Jµ− Jζ‖ ‖ν‖ = ‖µ− ζ‖ ‖ν‖ (30)

since 〈Jζ, ν〉 = 0 by Lemma 4.1. Also, ‖µ− ζ‖ < r. Therefore,

‖PJµν‖ =
|〈Jµ, ν〉|
‖Jµ‖

=
|〈Jµ, ν〉|
‖µ‖

≤ r ‖ν‖
‖µ‖

and thus ∥∥P⊥Jµν∥∥2 ≥
(

1− r2

‖µ‖2

)
‖ν‖2 .

As a consequence, we have

P (ξ, η) =
1

‖ν‖2

〈
S(µ)P⊥Jµν, P

⊥
Jµν
〉

+O(‖ν‖2)

≥ 1∥∥P⊥Jµν∥∥2

〈
S(µ)P⊥Jµν, P

⊥
Jµν
〉(

1− r2

‖µ‖2

)
+O(r2)

≥
(

1− r2

‖µ‖2

)
λ2n−1 (S(µ)) +O(r2) .

Take r → 0, by the continuity of eigenvalues with respect to matrix entries we have
that

A(z) ≥ λ2n−1(S(ζ)) . (31)

On the other hand, take E2n−1 to be the unit-norm eigenvector correspondent to
λ2n−1(S(ζ)). For each r > 0, take ξ = ζ + r

2
E2n−1 and η = ζ − r

2
E2n−1. Then

p(x, y) = P (ξ, η) = λ2n−1(S(ζ)) .

Hence
A(z) ≤ λ2n−1(S(ζ)) .

Together with (31) we have
A(z) = λ2n−1(S(ζ)) .

(ii) Assume on the contrary that A0 = 0, then for any N ∈ N, there exist xN , yN ∈ H for
which

p(xN , yN) =
‖α(xN)− α(yN)‖2

D2(xN , yN)2
≤ 1

N
. (32)

Without loss of generality we assume that ‖xN‖ ≥ ‖yN‖ for each N , for otherwise we
can just swap the role of xN and yN . Also due to homogeneity we assume ‖xN‖ = 1.
By compactness of the closed ball B1(0) = {x ∈ H : ‖x‖ ≤ 1} in H = Cn, there
exist convergent subsequences of {xN}N∈N and {yN}N∈N, which to avoid overuse of
notations we still denote as {xN}N∈N → x0 ∈ H and {yN}N∈N → y0 ∈ H.
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Since ‖x0‖ = 1 we have from (i) that A(x0) > 0. Note that D2(xN , yN) ≤ ‖xN‖ +
‖yN‖ ≤ 2, so by (32) we have ‖α(xN)− α(yN)‖ → 0. That is, ‖α(x0)− α(y0)‖ = 0.
By injectivity we have x0 = y0 in Ĥ. By Proposition 2.2(i),

p(xN , yN) ≥ A(x0)− 1/N > 1/N

for N large enough. This is a contradiction with (32).

(iii) The case z = 0 is an easy computation. We now present the proof for z 6= 0. First
we consider p(x, z) = P (ξ, ζ) as defined in (29). Fix r > 0. Take ξ ∈ R2n that satisfy
D2(x, z) = ‖ξ − ζ‖ < r. Let d = x− z and δ = j(d) = ξ − ζ. Note that

P (ξ, ζ) =

∑m
k=1 〈Φkξ, ξ〉+ 〈Φkζ, ζ〉 − 2

√
〈Φkξ, ξ〉 〈Φkζ, ζ〉

‖ξ‖2 + ‖ζ‖2 − 2
√
〈ξ, ζ〉2 + 〈ξ, Jζ〉2

.

We can compute its numerator

m∑
k=1

〈Φkξ, ξ〉+ 〈Φkζ, ζ〉 − 2
√
〈Φkξ, ξ〉 〈Φkζ, ζ〉

=
m∑
k=1

〈Φkζ, ζ〉+ 2 〈Φkζ, δ〉+ 〈Φkδ, δ〉+ 〈Φkζ, ζ〉−

2
√

(〈Φkζ, ζ〉+ 2 〈Φkζ, δ〉+ 〈Φkδ, δ〉) · 〈Φkζ, ζ〉

=
∑

k:Φkζ 6=0

2 〈Φkζ, ζ〉+ 2 〈Φkζ, δ〉+ 〈Φkδ, δ〉+

2 〈Φkζ, ζ〉
(

1 +
〈Φkζ, ζ〉 〈Φkζ, δ〉+ 1

2
〈Φkζ, ζ〉 〈Φkδ, δ〉

〈Φkζ, ζ〉2
−

1

8
· 4 〈Φkζ, ζ〉2 〈Φkζ, δ〉2

〈Φkζ, ζ〉4
+O

(
‖δ‖3))+

∑
k:Φkζ=0

〈Φkδ, δ〉

=
∑

k:Φkζ 6=0

〈Φkζ, δ〉2

〈Φkζ, ζ〉
+

∑
k:Φkζ=0

〈Φkδ, δ〉+O
(
‖δ‖3) ;

and its denominator

‖ξ‖2 + ‖ζ‖2 − 2

√
〈ξ, ζ〉2 + 〈ξ, Jζ〉2

= 2 ‖ζ‖2 + ‖δ‖2 + 2 〈ζ, δ〉 − 2 ‖ζ‖2

(
1+

‖ζ‖2 〈ζ, δ〉+ 1
2
〈ζ, δ〉+ 1

2
〈Jζ, δ〉2

‖ζ‖4 − 4 ‖ζ‖4 〈ζ, δ〉2

8 ‖ζ‖8 +O
(
‖δ‖3))

= ‖δ‖2 +O
(
‖δ‖3) .

We used Lemma 4.1 to get 〈Jζ, δ〉 = 0 in the above.
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Take r → 0, we see that

Ã(z) ≥ λ2n−1

S(ζ) +
∑

k:〈z,fk〉=0

Φk

 .

Let Ẽ2n−1 be the unit-norm eigenvector correspondening to

λ2n−1

S(ζ) +
∑

k:〈z,fk〉=0

Φk

 .

Note that
〈
Jζ, Ẽ2n−1

〉
= 0 since S(ζ)Jζ = 0 and ΦkJζ = JΦkζ = 0 for each k with

〈z, fk〉 = 0. Take ξ = ζ + r
2
Ẽ2n−1 for each r, we again also have

Ã(z) ≤ λ2n−1

S(ζ) +
∑

k:〈z,fk〉=0

Φk

 .

Therefore

Ã(z) = λ2n−1

S(ζ) +
∑

k:〈z,fk〉=0

Φk

 .

(iv) Take z = 0 in (iii).

(v) B̃(z) can be computed in a similar way as in (iii) (in particular, the expansion for
P (ξ, ζ) is exactly the same). We compute B(z). B(0) is computed in [8], Lemma
16. Now we consider z 6= 0. Use the same notations as in (29). Fix r > 0. Again,
take ξ, η ∈ R2n that satisfy D2(x, z) = ‖ξ − ζ‖ < r and D2(y, z) = ‖η − ζ‖ < r. Let
µ = (ξ + η)/2 and ν = (ξ − η)/2. Also let δ1 = ξ − ζ and δ2 = η − ζ. Recall that

P (ξ, η) =

∑m
k=1 〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2

√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

=
m∑
k=1

〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2
√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

.

Now we compute it as
∑m

k=1 =
∑

k:Φkζ 6=0 +
∑

k:Φkζ=0. Again,

∑
k:Φkζ 6=0

〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2
√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

=
∑

k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2

‖µ‖2 + ‖ν‖2 −
√
‖µ‖4 + ‖ν‖4 − 2 ‖µ‖2 ‖ν‖2 + 4 〈µ, Jν〉2

.

(33)
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Using the same computation as in (i), we get that the numerator is∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2

= 2 〈S(µ)ν, ν〉+O(‖ν‖4) .

Since µ 6= 0, the denominator is

‖µ‖2 + ‖ν‖2 −
√
‖µ‖4 + ‖ν‖4 − 2 ‖µ‖2 ‖ν‖2 + 4 〈µ, Jν〉2

= ‖µ‖2 + ‖ν‖2 − ‖µ‖2

√
1 +
‖ν‖4

‖µ‖4 −
2 ‖ν‖2

‖µ‖2 +
4 〈µ, Jν〉2

‖µ‖4

= ‖µ‖2 + ‖ν‖2 − ‖µ‖2

(
1− ‖ν‖

2

‖µ‖2 +
2 〈µ, Jν〉2

‖µ‖4

)
+O(‖ν‖4)

= 2 ‖ν‖2 − 2 〈Jµ, ν〉2

‖µ‖2 +O(‖ν‖4)

= 2 ‖ν‖2 +O(‖ν‖4) by (30).

(34)

Also we can compute using the denominator as above (note that ν = (δ1− δ2)/2) that∑
k:Φkζ=0

〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2
√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

=
∑

k:Φkζ=0

(∥∥∥Φ
1/2
k δ1

∥∥∥− ∥∥∥Φ
1/2
k δ2

∥∥∥)2

‖δ1 − δ2‖2 +O(‖ν‖4)
.

(35)

Now put together (33), (34) and (35), we get

P (ξ, η) =
〈S(µ)ν, ν〉+O(‖ν‖4)

‖ν‖2 +O(‖ν‖4)
+

∑
k:Φkζ=0

(∥∥∥Φ
1/2
k δ1

∥∥∥− ∥∥∥Φ
1/2
k δ2

∥∥∥)2

‖δ1 − δ2‖2 +O(‖ν‖4)
.

Note that (∥∥∥Φ
1/2
k δ1

∥∥∥− ∥∥∥Φ
1/2
k δ2

∥∥∥)2

≤ 〈Φk(δ1 − δ2), δ1 − δ2〉

since it is equivalent to

〈Φkδ1, δ1〉 〈Φkδ2, δ2〉 ≥ (〈Φkδ1, δ2〉)2 , (36)

which is the Cauchy-Schwarz inequality. Therefore, we have that

P (ξ, η) ≤

〈
(S(µ) +

∑
k:Φkζ=0 Φk)ν, ν

〉
+O(‖ν‖4)

‖ν‖2 +O(‖ν‖4)
≤ λ1

(
S(µ) +

∑
k:Φkζ=0

Φk

)
+O(r2) .
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Take r → 0 we have that

B(z) ≤ λ1

(
S(ζ) +

∑
k:Φkζ=0

Φk

)
.

Again we get the other direction of the above inequality by taking ξ = ζ + r
2
E1 and

η = ζ − r
2
E1 for each r > 0 where E1 is the unit-norm eigenvector correspondent to

λ1

(
S(ζ) +

∑
k:〈z,fk〉=0 Φk

)
. Note that for each r, the equality in (36) holds for this

pair of ξ and η.

(vi) Take z = 0 in (v).

4.2. Proof of Theorem 2.5

Only the first two parts are nontrivial. We prove them as follows.
Fix z ∈ Cn. Take x = z + d1 and y = z + d2 with ‖d1‖ < r and ‖d2‖ < r for r small.

Let u = x + y = 2z + d1 + d2 and v = x − y = d1 − d2. Let µ = 2ζ + δ1 + δ2 ∈ R2n and
ν = δ1 − δ2 ∈ R2n be the realification of u and v, respectively. Define

ρ(x, y) =
‖β(x)− β(y)‖2

d1(x, y)2
.

By the same computation as in [3], Section 4.1, we get

ρ(x, y) = Q(ζ; δ1, δ2) :=
〈R(2ζ + δ1 + δ2)(δ1 − δ2), δ1 − δ2〉

‖2ζ + δ1 + δ2‖2
〈
P⊥J(2ζ+δ1+δ2)(δ1 − δ2), δ1 − δ2

〉 .

Since J(2ζ + δ1 + δ2) ∈ ker R(2ζ + δ1 + δ2), we have

Q(ζ; δ1, δ2) =

〈
R(2ζ + δ1 + δ2)P⊥J(2ζ+δ1+δ2)(δ1 − δ2), P⊥J(2ζ+δ1+δ2)(δ1 − δ2)

〉
‖2ζ + δ1 + δ2‖2

〈
P⊥J(2ζ+δ1+δ2)(δ1 − δ2), δ1 − δ2

〉 .

Now let δ = δ1 + δ2 and ν = δ1 − δ2. Note the set inclusion relation{
δ1, δ2 ∈ R2n : ‖δ‖ < r

2
, ‖ν‖ < r

2
, ν ⊥ J(2ζ + δ)

}
⊂
{
δ1, δ2 ∈ R2n : ‖δ1‖ < r, ‖δ2‖ < r, ν ⊥ J(2ζ + δ)

}
⊂
{
δ1, δ2 ∈ R2n : ‖δ‖ < 2r, ‖ν‖ < 2r, ν ⊥ J(2ζ + δ)

}
.

Thus we have

inf
‖δ‖<2r
‖ν‖<2r

ν⊥J(2ζ+δ)

Q(ζ; δ1, δ2) ≤ inf
‖δ1‖<r
‖δ2‖<r

ν⊥J(2ζ+δ)

Q(ζ; δ1, δ2) ≤ inf
‖δ‖<r/2
‖ν‖<r/2
ν⊥J(2ζ+δ)

Q(ζ; δ1, δ2) .
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That is,

inf
‖δ‖<2r

λ2n−1(R(2ζ + δ))

‖2ζ + δ‖2 ≤ inf
‖δ1‖<r
‖δ2‖<r

ν⊥J(2ζ+δ)

Q(ζ; δ1, δ2) ≤ inf
‖δ‖<r/2

λ2n−1(R(2ζ + δ))

‖2ζ + δ‖2 .

Take r → 0, by the continuity of eigenvalues with respect to the matrix entries, we have

λ2n−1(R(ζ))/ ‖ζ‖2 ≤ a(z) ≤ λ2n−1(R(ζ))/ ‖ζ‖2 .

That is,
a(z) = λ2n−1(R(ζ))/ ‖ζ‖2 .

Now consider

ρ(x, z) =
‖β(x)− β(z)‖2

d1(x, z)2
.

For simplicity write δ = δ1. We can compute that

ρ(x, z) = Q(ζ; δ) =
〈R(2ζ + δ)δ, δ〉

‖2ζ + δ‖2
〈
P⊥J(2ζ+δ)δ, δ

〉 =

〈
R(2ζ + δ)P⊥J(2ζ+δ)δ, P

⊥
J(2ζ+δ)δ

〉
‖2ζ + δ‖2

〈
P⊥J(2ζ+δ)δ, δ

〉 .

Note that

inf
‖δ‖<r

δ⊥J(2ζ+δ)

Q(ζ; δ) ≥ inf
‖σ‖<r

inf
‖δ‖<r

δ⊥J(2ζ+δ)

Q(ζ; δ) = inf
‖σ‖<r

λ2n−1(R(2ζ + δ)) .

Take r → 0 we have that

ã(z) ≥ λ2n−1(R(2ζ))/ ‖2ζ‖2 = λ2n−1(R(ζ))/ ‖ζ‖2 .

On the other hand, take ẽ2n−1 to be a unit-norm eigenvector correspondent to λ2n−1(R(2ζ)).
Then by the continuity of eigenvalues with respect to the matrix entries, for any ε > 0, there
exists t > 0 so that δ = tẽ2n−1 satisfy

〈R(2ζ + δ)δ, δ〉〈
P⊥J(2ζ+δ)δ, δ

〉 ≤ λ2n−1(R(2ζ)) + ε

and from there we have

ã(z) ≤ λ2n−1(R(2ζ))/ ‖2ζ‖2 = λ2n−1(R(ζ))/ ‖ζ‖2 .

Therefore,
ã(z) = λ2n−1(R(ζ))/ ‖ζ‖2 .

In a similar way (replacing infimum by supremum) we also get b(z) and b̃(z) as stated
in the theorem.
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4.3. Proof of Proposition 3.1

(i) Obviously Dp(x̂, ŷ) ≥ 0 for any x̂, ŷ ∈ Ĥ and Dp(x̂, ŷ) = 0 if and only if x̂ = ŷ.
Also Dp(x̂, ŷ) = Dp(ŷ, x̂) since ‖x− ay‖p = ‖y − a−1x‖p for any x, y ∈ H, |a| = 1.

Moreover, for any x̂, ŷ, ẑ ∈ Ĥ, fix Dp(x̂, ŷ) = ‖x− ay‖p, Dp(ŷ, ẑ) = ‖z − by‖, then

Dp(x̂, ẑ) ≤
∥∥x− ab−1z

∥∥
p

= ‖bx− az‖p
≤‖bx− aby‖p + ‖aby − az‖p = Dp(x̂, ŷ) +Dp(ŷ, ẑ) .

Therefore Dp is a metric. dp is also a metric since ‖·‖p in the definition of dp is the
standard Schatten p-norm of a matrix.

(ii) For p ≤ q, by Hölder’s inequality we have for any x = (x1, x2, ..., xn) ∈ H that∑n
i=1 |xi|p ≤ n( 1

p
− 1
q

)(
∑n

i=1 |xi|q)
p
q . Thus ‖x‖p ≤ n( 1

p
− 1
q

) ‖x‖q. Also, since ‖·‖p is homo-
geneous, we can assume ‖x‖p = 1. Then

∑n
i=1 |xi|q ≤

∑n
i=1 |xi|p = 1. Thus ‖x‖q ≤

‖x‖p. Therefore, we have Dq(x̂, ŷ) = ‖x− a1y‖q ≥ n( 1
p
− 1
q

) ‖x− a1y‖p ≥ n( 1
p
− 1
q

)Dp(x̂, ŷ)
and Dp(x̂, ŷ) = ‖x− a2y‖p ≥ ‖x− a2y‖q ≥ Dq(x̂, ŷ) for some a1, a2 with magnitude
1. Hence

Dq(x̂, ŷ) ≤ Dp(x̂, ŷ) ≤ n( 1
p
− 1
q

)Dq(x̂, ŷ) .

We see that (Dp)1≤p≤∞ are equivalent. The second part follows then immediately.

(iii) The proof is similar to (ii). Note that there are at most 2 σi’s that are nonzero, so we

have 2( 1
p
− 1
q

) instead of n( 1
p
− 1
q

).

(iv) To prove that Dp and dq are equivalent, we need only to show that each open ball with
respect to Dp contains an open ball with respect to dp, and vice versa. By (ii) and
(iii), it is sufficient to consider the case when p = q = 2.
First, we fix x ∈ H = Cn, r > 0. Let R = min(1, rn−2(2 ‖x‖∞ + 1)−1). Then for
any ŷ such that D2(x̂, ŷ) < R, we take y such that ‖x− y‖ < R, then ∀1 ≤ i, j ≤ n,
|xixj − yiyj| = |xi(xj − yj) + (xi − yi)yj| < |xi|R + R(|xi| + R) = R(2|xi| + R) ≤
R(2|xi|+ 1) ≤ r

n2 . Hence d2(x̂, ŷ) = ‖xx∗ − yy∗‖2 < n2 · r
n2 = r.

On the other hand, we fix x ∈ H = Cn, R > 0. Let r = R2/
√

2. Then for any ŷ such
that d2(x̂, ŷ) < r, we have

(d2(x̂, ŷ))2 = ‖x‖4 + ‖y‖4 − 2|〈x, y〉|2 < r2 =
R4

2
.

But we also have

(D2(x̂, ŷ))2 = min
|a|=1
‖x− ay‖2 =

∥∥∥∥x− 〈x, y〉|〈x, y〉|
y

∥∥∥∥2

= ‖x‖2 + ‖y‖2 − 2|〈x, y〉| ,

so

(D2(x̂, ŷ))4 = ‖x‖4 + ‖y‖4 + 2 ‖x‖2 ‖y‖2 − 4(‖x‖2 + ‖y‖2)|〈x, y〉|+ 4|〈x, y〉|2 .
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Since |〈x, y〉| ≤ ‖x‖ ‖y‖ ≤ (‖x‖2 + ‖y‖2)/2, we can easily check that (D2(x̂, ŷ))4 ≤
2(d2(x̂, ŷ))2 < R4. Hence D2(x̂, ŷ) < R.
Thus D2 and d2 are indeed equivalent metrics. Therefore Dp and dq are equivalent.
Also, the imbedding i is not Lipschitz: if we take x = (x1, 0, . . . , 0) ∈ Cn, then
D2(x̂, 0) = |x1|, d2(x̂, 0) = |x1|2.

(v) First, for p = 2, for x̂ 6= ŷ in Ĥ − {0}, we compute the quotient

ρ(x, y) =
‖κα(x)− κα(y)‖2

D2(x, y)2

=

∥∥‖x‖−1 xx∗ − ‖y‖−1 yy∗
∥∥2

‖x‖2 + ‖y‖2 − 2 |〈x, y〉|

=
‖xx∗‖2 ‖y‖2 + ‖x‖2 ‖yy∗‖2 − 2 ‖x‖ ‖y‖ trace(xx∗yy∗)

‖x‖4 ‖y‖2 + ‖x‖2 ‖y‖4 − 2 ‖x‖2 ‖y‖2 |x∗y|

= 1 +
2 ‖x‖ ‖y‖ (‖x‖ ‖y‖ |x∗y| − trace(xx∗yy∗))

‖x‖4 ‖y‖2 + ‖x‖2 ‖y‖4 − 2 ‖x‖2 ‖y‖2 |x∗y|

= 1 +
2 (‖x‖ ‖y‖ |x∗y| − trace(xx∗yy∗))

‖x‖3 ‖y‖+ ‖x‖ ‖y‖3 − 2 ‖x‖ ‖y‖ |x∗y|
,

where we used ‖xx∗‖ = ‖x‖2. For simplicity write a = ‖x‖, b = ‖y‖ and t = |〈x, y〉| ·
(‖x‖ ‖y‖)−1. We have a > 0, b > 0 and 0 ≤ t ≤ 1.
Now

ρ(x, y) = 1 +
2(abt− abt2)

a2 + b2 − 2abt
.

Obviously ρ(x, y) ≥ 1. Now we prove that ρ(x, y) ≤ 2. Note that

1 +
2(abt− abt2)

a2 + b2 − 2abt
≤ 2 ⇔ a2 + b2 − 4abt+ 2abt2 ≥ 0 ,

but
a2 + b2 − 4abt+ 2abt2 ≥ 2ab− 4abt+ 2abt2 = 2ab(t− 1)2 ≥ 0,

so we are done. Note that take any x, y with 〈x, y〉 = 0 we would have ρ(x, y) = 1.
On the other hand, taking ‖x‖ = ‖y‖ and let t → 1 we see that ρ(x, y) = 2 − ε is
achievable for any small ε > 0. Therefore the constants are optimal. The case where
one of x and y is zero would not break the constraint of these two constants. Therefore
after taking the square root, we get lower Lipschitz constant 1 and upper Lipschitz
constant

√
2.

For other p, we use the results in (ii) and (iii) to get that the lower Lipschitz constant

for κα is min(2
1
2
− 1
p , n

1
p
− 1

2 ) and the upper Lipschitz constant is
√

2 max(n
1
2
− 1
p , 2

1
p
− 1

2 ).

(vi) This follows directly from the construction of the map.

(vii) This follows directly from (v) and (vi).
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4.4. Proof of Lemma 3.4

(ii) follows directly from the expression of π. We prove (i) below.

Let A, B ∈ Sym(H) where A =
∑d

k=1 λm(k)Pk and B =
∑d′

k′=1 µm(k′)Qk′ . We now show
that

‖π(A)− π(B)‖p ≤ (3 + 21+ 1
p ) ‖A−B‖p . (37)

Assume λ1 − λ2 ≤ µ1 − µ2. Otherwise switch the notations for A and B. If µ1 − µ2 = 0
then π(A) = π(B) = 0 and the inequality (37) is satisfied. Assume now µ1 − µ2 > 0. Thus
Q1 is of rank 1 and ‖Q1‖p = 1 for all p.

First we consider the case λ1 − λ2 > 0. In this case P1 is of rank 1, and we have

π(A)−π(B) = (λ1−λ2)P1−(µ1−µ2)Q1 = (λ1−λ2)(P1−Q1)+(λ1−µ1−(λ2−µ2))Q1 . (38)

Here ‖P1‖∞ = ‖Q1‖∞ = 1. Therefore we have ‖P1 −Q1‖∞ ≤ 1 since P1, Q1 ≥ 0. From

that we have ‖P1 −Q1‖p ≤ 2
1
p .

Also, by Weyl’s inequality we have |λi − µi| ≤ ‖A−B‖∞ for each i. Apply this to
i = 1, 2 we get |λ1 − µ1 − (λ2 − µ2)| ≤ |λ1 − µ1| + |λ2 − µ2| ≤ 2 ‖A−B‖∞. Thus
|λ1 − µ1|+ |λ2 − µ2| ≤ 2 ‖A−B‖∞ ≤ 2 ‖A−B‖p.

Let g := λ1 − λ2, δ := ‖A−B‖p, then apply the above inequality to (38) we get

‖π(A)− π(B)‖p ≤ g ‖P1 −Q1‖p + 2δ ≤ 2
1
p g + 2δ . (39)

If 0 < g ≤ (2 + 2−
1
p )δ, then ‖π(A)− π(B)‖p ≤ (21+ 1

p + 3)δ and we are done.

Now we consider the case where g > (2 + 2−
1
p )δ. Note that in this case we have δ < g/2.

Thus we have |λ1 − µ1| < g/2 and |λ2 − µ2| < g/2. That means µ1 > (λ1 + λ2)/2 and
µ2 < (λ1 + λ2)/2. Therefore, we can use holomorphic functional calculus and put

P1 = − 1

2πi

∮
γ

RAdz

and

Q1 = − 1

2πi

∮
γ

RBdz

where RA = (A − zI)−1, RB = (B − zI)−1, and γ = γ(t) is the contour given in Figure 2
(note that γ encloses µ1 but not µ2) and used also by [15]. Therefore we have

‖P1 −Q1‖p ≤
1

2π

∫
I

‖(RA −RB)(γ(t))‖p |γ
′(t)|dt . (40)

Now we have

(RA −RB)(z) = RA(z)− (I +RA(z)(B − A))−1RA(z) =
∑
n≥1

(−1)n(RA(z)(B − A))nRA(z) ,

(41)
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Figure 2: Contour for the integrals

since for large L we have ‖RA(z)(B − A)‖∞ ≤ ‖RA(z)‖∞ ‖B − A‖p ≤
δ

dist(z,σ(A))
≤ 2δ

g
<

2

2+2
− 1
p
< 1, where σ(A) denotes the spectrum of A. Therefore we have

‖(RA −RB)(γ(t))‖p ≤
∑
n≥1

‖RA(γ(t))‖n+1
∞ ‖A−B‖np

=
‖RA(γ(t))‖2

∞ ‖A−B‖p
1− ‖RA(γ(t))‖∞ ‖A−B‖p

<
‖A−B‖p

dist2(γ(t), σ(A))
· (21+ 1

p + 1) ,

(42)

since dist(γ(t), σ(A)) ≥ g/2 for each t for large L. Here we used the fact that if we order
the singular values of any matrix X such that σ1(X) ≥ σ2(X) ≥ · · · , then for any i
we have σi(XY ) ≤ σ1(X)σi(Y ), and thus for two operators X, Y ∈ Sym(H), we have
‖XY ‖p ≤ ‖X‖∞ ‖Y ‖p.

Hence by (40) and (42) we have

‖P1 −Q1‖p ≤ (2
1
p + 2−1)

‖A−B‖p
π

∫
I

1

dist2(γ(t), σ(A))
|γ′(t)|dt . (43)

By evaluating the integral and letting L approach infinity for the contour, we have as in
[15] ∫

I

1

dist2(γ(t), σ(A))
|γ′(t)|dt = 2

∫ ∞
0

1

t2 + (g
2
)2
dt =

[
4

g
arctan

(
2t

g

)]∞
0

=
2π

g
. (44)

Hence

‖P1 −Q1‖p ≤ (2
1
p + 2−1)

‖A−B‖p
π

· 2π

g
= (21+ 1

p + 1)
δ

g
. (45)

Thus by the first inequality in (39) and (45) we have ‖π(A)− π(B)‖p ≤ (3 + 21+ 1
p )δ.
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Now we are left with the case λ1−λ2 = 0 < µ1−µ2. Note that in this case we have that
π(A)− π(B) = −(µ1 − µ2)Q1 = ((λ1 − µ1)− (λ2 − µ2))Q1, and therefore

‖π(A)− π(B)‖p ≤ 2 ‖A−B‖p < (3 + 21+ 1
p ) ‖A−B‖p .

We have proved that ‖π(A)− π(B)‖p ≤ (3 + 21+ 1
p ) ‖A−B‖p. That is to say, π :

(Sym(H), ‖·‖p)→ (S1,0(H), ‖·‖p) is Lipschitz continuous with Lip(π) ≤ 3 + 21+ 1
p .

Now we are ready to prove Theorem 3.3.

4.5. Proof of Theorem 3.3

The proof for α and β are the same in essence. For simplicity we do it for β first.
We need to construct a map ψ : (Rm, ‖·‖p)→ (Ĥ, dq) so that ψ(β(x)) = x for all x ∈ Ĥ,

and ψ is Lipschitz continuous. We prove the Lipschitz bound (15), which implies (14) for
p = 2 and q = 1.

Set M = β(Ĥ) ⊂ Rm. By the result in Section 2.3, there is a map ψ̃1 : M → Ĥ that is
Lipschitz continuous and satisfies ψ̃1(β(x)) = x for all x ∈ Ĥ. Additionally, the Lipschitz
bound between (M, ‖·‖2) (that is, M with Euclidean distance) and (Ĥ, d1) is given by 1/

√
a0.

First we change the metric on Ĥ from d1 to d2 and embed isometrically Ĥ into Sym(H)
with Frobenius norm (i.e. the Euclidean metric):

(M, ‖·‖2)
ψ̃1−→ (Ĥ, d1)

i1,2−→ (Ĥ, d2)
κβ−→ (Sym(H), ‖·‖Fr) , (46)

where i1,2(x) = x is the identity of Ĥ and κβ is the isometry (10) . We obtain a map
ψ̃2 : (M, ‖·‖2)→ (Sym(H), ‖·‖Fr) of Lipschitz constant

Lip(ψ̃2) ≤ Lip(ψ̃1)Lip(i1,2)Lip(κβ) =
1
√
a0

,

where we used Lip(i1,2) = Ld1,2,n = 1 by (8).

Kirszbraun Theorem [14] extends isometrically ψ̃2 from M to the entire Rm with Eu-
clidean metric ‖·‖. Thus we obtain a Lipschitz map ψ2 : (Rm, ‖·‖) → (Sym(H), ‖·‖Fr) of

Lipschitz constant Lip(ψ2) = Lip(ψ̃2) ≤ 1√
a0

so that ψ2(β(x)) = xx∗ for all x ∈ Ĥ.

The third step is to piece together ψ2 with norm changing identities. For q ≤ 2 we
consider the following maps:

(Rm, ‖·‖p)
jp,2−→ (Rm, ‖·‖2)

ψ2−→ (Sym(H), ‖·‖Fr)

π−→ (S1,0(H), ‖·‖Fr)
κ−1
β−→ (Ĥ, d2)

i2,q−→ (Ĥ, dq) ,

(47)

where jp,2 and i2,q are identity maps on the respective spaces that change the metric and π is
the map defined in Eq. (23). The map ψ claimed by Theorem 3.3 is obtained by composing:

ψ : (Rm, ‖·‖p)→ (Ĥ, dq) , ψ = i2,q · κ−1
β · π · ψ2 · jp,2 .

26



Its Lipschitz constant is bounded by

Lip(ψ)p,q ≤ Lip(jp,2)Lip(ψ2)Lip(π)Lip(κ−1
β )Lip(i2,q)

≤ max(1,m
1
2
− 1
p )

1
√
a0

· (3 + 2
√

2) · 1 · 2
1
q
− 1

2 .

Hence we obtained (20). The other equation (14) follows for p = 2 and q = 1.
For q > 2 we use:

(Rm, ‖·‖p)
jp,2−→ (Rm, ‖·‖2)

ψ2−→ (Sym(H), ‖·‖Fr)
I2,q−→ (Sym(H), ‖·‖q)

π−→ (S1,0(H), ‖·‖q)
κ−1
β−→ (Ĥ, dq) ,

(48)

where jp,2 and I2,q are identity maps on the respective spaces that change the metric. The
map ψ claimed by Theorem 3.3 is obtained by composing:

ψ : (Rm, ‖·‖p)→ (Ĥ, dq) , ψ = κ−1
β · π · I2,q · ψ2 · jp,2 .

Its Lipschitz constant is bounded by

Lip(ψ)p,q ≤ Lip(jp,2)Lip(ψ2)Lip(I2,q)Lip(π)Lip(κ−1
β ) ≤ max(1,m

1
2
− 1
p )

1
√
a0

· 1 · (3 + 21+ 1
q ) · 1 .

Hence we obtained (21).
Replace β by α, ψ by ω, and κβ by κα in the proof above, using the Lipschitz constants

for κα in Proposition 3.1, we obtain (16) and (17).
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